Publication - Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands
Abstract
Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67 degrees S; Signy Island, 61 degrees S), and contrasted the responses found with those at the cool temperate Falkland Islands (52 degrees S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 degrees C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 degrees C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase < 1 degrees C) compared with the laboratory (experimental increases of 4 or 8 degrees C) shows that substantial warming is required before significant effects can be detected.
Authors
Datasets
Title | Start date | End date |
Functioning of terrestrial ecosystems of the Maritime Antarctic in a warmer climate | 2003-01-01 | 2007-01-01 |
Projects
Title | Funding id | Period |
Terrestrial ecosystems in ARctic and ANTarctic: effects of UV Light, Liquefying ice and Ascending temperatures | 851.40.003 | 2007-10-01 - 2010-12-31 |
Publication type
Journal Article
Date
2007-12-01
Journal
Global Change Biology
Volume
13
Issue
12
Pages
2642-2653
ISBN
1354-1013
DOI
Keywords
- Biodiversity
- Chemistry
- Environmental change
- Functional types
- Global change
- Growth
- Leaf-litter decomposition
- Manipulations
- Microbial breakdown
- Soil respiration
- Soil respiration
- Temperature
- Terrestrial ecosystems